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Abstract

The minimum information copula (or the maximum entropy copula) is the most independent
copula satisfying the given constraints. For these constraints, first-order expectation constraints
on moments, such as Spearman’s rank correlation, are mostly considered. On the other hand,
such copulas under second-order constraints have not been studied well. We present a variant of
minimum information copula that has a constraint on a popular second-order constraint known as
Kendall’s rank correlation, instead of first-order constraints. Due to this modification, the convex-
ity of the problem becomes non-trivial and the form of density function of this variant is unknown.
We analyze its property via one of the widely known discrete approximation of copulas, called
checkerboard copulas. Checkerboard copulas can be considered identical to contingency tables.
First, we introduce a transfer operation of probability mass on checkerboard copulas, which is
technically equivalent to considering non-orthogonal basis of the total space of checkerboard cop-
ulas. Using this approach, we show several mathematical properties of the minimum information
checkerboard copula under fixed Kendall’s rank correlation. Firstly, this copula is characterized by
a certain amount, which we name as ”extended log odds ratio”. It is also guaranteed that the den-
sity of this copula belongs to a function class known as ”total positivity of order two (TP2)”, one
of the positive dependence properties that has been extensively studied for copulas. Furthermore,
geometric interpretations of this problem setting will be investigated.

1 Minimum Information Copulas under fixed Kendall’s rank
correlation (MICK)

We consider an optimization problem where the information of a bivariate copula is minimized under
the constraint fixing Kendall’s rank correlation to a constant given in advance. We name its optimal
solution MICK, which is the abbreviation of Minimum Information Copulas under fixed Kendall’s rank
correlation. For general moment conditions including Spearman’s rank correlation, similar framework
has been studied by [Bedford and Wilson(2014)], showing that the problem is convex. On the other
hand, this problem for MICK is non-convex and its optimal solution is not obtained explicitly. Instead
of solving the problem directly, we state several mathematical properties of MICK.

The continuous problem is written as follows:

(CP ) minimize

∫ 1

0

∫ 1

0

p(x, y) log p(x, y)dxdy,

s.t.

∫ 1

0

p(x, y)dx = 1,

∫ 1

0

p(x, y)dy = 1,

0 ≤ p(x, y),∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dxdydx̃dỹ sgn(x− x̃)sgn(y − ỹ)p(x, y)p(x̃, ỹ) = µ.

For simplicity, we we expect the discrete version asymptotically approach the continuous problem as
the grid size grows.
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(P ) minimize

I∑
i=1

J∑
j=1

πij log πij

s.t.

I∑
i=1

πij =
1

J
,

J∑
j=1

πij =
1

I
,

0 ≤ πij ≤ 1,

1− tr(ΞΠΞΠ⊤) = µ,

where µ ∈ [0, 1] is a given constant. Note that we deal with the problem of checkerboard copula
densities p(x, y) through the problem of equivalent contingency tables (πij). The last constraint makes
the problem non-convex.

2 Geometry around MICK

Piantadosi et al. [Piantadosi et al.(2012)Piantadosi, Howlett and Borwein] reformulate the representa-
tion of copulas using the fact that each doubly stochastic matrix is a convex combination of permutation
matrices, thanks to Birkhoff-von Neumann theorem. Let P1 = [p1,ij ], . . . , Pn! = [pn!,ij ] ∈ Rn×n. There
exists a convex combination

πij =

n!∑
k=1

αkpk,ij , such that

n!∑
k=1

αk = 1, αk ≥ 0.

This representation, however, is redundant in that the combination is not determined uniquely. Instead,
we attempt to represent checkerboard copulas according to a specific basis defined as follows.

Let Tij = (tij) ∈ Mn×n, where

ti′j′ =


1 if (i′, j′) = (i, j) or (i′, j′) = (i+ 1, j + 1),

−1 if (i′, j′) = (i+ 1, j) or (i′, j′) = (i, j + 1),

0 otherwise.

Then we observe that the space of checkerboard copula is expressed as a subspace of a (n − 1)2

dimensional vector space equipped with unorthogonal basis {Tij}. For every checkerboard copula P ,

∃1{p′ij} ∈ R, P = U +

I−1∑
i=1

J−1∑
j=1

p′ijTij , (1)

where U denotes a uniform checkerboard copula. It is also convenient if we introduce a vector space
corresponding to checkerboard copulas.

p = u+

n2∑
k=1

p′ktk =
1

n2
1n2 +

n2∑
k=1

p′ktk

Here, p, u, tk are n2−dimensional vectors, aligning P , U , Tij respectively. 1n2 is an all-one n2−dimensional
vector Note that in order to assure P is a checkerboard copula, there are explicit constraints on p′ij
so that no entry in P becomes negative. From this equation, it is also possible to obtain (p′ij)s from
(pij)s.

p′ = (A⊗A)†(p− 1

n2
1n2),
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where † denotes pseudo-inverse matrix, ⊗ denotes Kronecker product, and n× (n− 1) matrix

A =


1 0 0 . . .
−1 1 0 . . .
0 −1 1 . . .
0 0 −1 . . .

 .

For example, p′ij = 0 (∀i, j) for a uniform copula and

p′11 = p′44 ≒ 0.0791

p′22 = p′33 ≒ 0.1445

p′12 = p′21 = p′34 = p′43 ≒ 0.0949

p′13 = p′31 = p′24 = p′42 ≒ 0.0734

p′14 = p′41 ≒ 0.0386

p′23 = p′32 ≒ 0.1304

for MICK with the grid size of 5 × 5.
Now, we provide an intuitive interpretation of {Tij} from a different perspective. From the definition

of Tij , increasing the coordinate p′ij in equation (3) means to first choose any 2 × 2 region on a
checkerboard copula P and then transfer probability mass from two diagonal regions to the other
adjacent regions. In other words, its diagonal regions increase by ∆ while its anti-diagonal regions
increase by −∆, keeping its row sum and column sums the same. This movement guarantees that P
is still a checkerboard copula after the transfer. When you start from an uniform copula and try to
apply this transfer as many times as possible on a copula, you will eventually arrive at the comonotone
copula.

With this new basis {Tij}, the space of checkerboard copulas can be visualized for better under-
standing of their properties. The space of discrete I × J bivariate copulas is known to corresponds to
a polytope called generalized Birkhoff polytope. When I = J = n, it corresponds to a Birkhoff poly-
tope, noted as Bn. Bn has n! vertices, each of which corresponds to a permutation matrix. Therefore,
the optimization problem (P ) is a problem where we find a minimum information discrete distribu-
tion on intersection of Bn and K, where K denotes the curve surface with a constant Kendall’s rank
correlation.

Example 1 (I = 3, J = 2). Expression of a copula P in new coordinates is

P =

p11 p12
p21 p22
p31 p32

 =

 1
6

1
6

1
6

1
6

1
6

1
6

+ p′11

 1 −1
−1 1
0 0

+ p′21

 0 0
1 −1
−1 1

 .

The constraint on Kendall’s tau becomes 1 − tr(ΞPΞP⊤) = µ ⇔ 4
3p

′
11 +

4
3p

′
21 = µ, which is depicted

as a green line in Figure 1.

3 Main results

In this section, we observe that there exists a invariant value on every 2× 2 submatrices of the matrix
associated with MICK by considering the stationary conditions. First, we derive two values, the
variation of Kendall’s tau and the variation of the objective function of (P ). Proofs are just tedious
calculations, thus omitted in this paper.

Lemma 1 (Variation of Kendall’s tau). Let Π = (πi,j) be a checkerboard copula. Consider a small
change ϵTij(ϵ ≪ 1) on Π. The variation of Kendall’s tau is

2ϵ(πi,j + πi+1,j+1 + πi+1,j + πi,j+1)
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Fig. 1: Visualization of 3× 2 checkerboard copulas space

This value πi,j + πi+1,j+1 + πi+1,j + πi,j+1 is positive, meaning that Kendall’s tau always increases
when Tij is added to a copula.

Lemma 2 (Variation of the objective function). Let Π = (πi,j) be a checkerboard copula. Consider a
small change ϵTij(ϵ ≪ 1) on Π. The variation of copula information is

ϵ log
πi,jπi+1,j+1

πi+1,jπi,j+1
.

Two variations from Lemma 3 and Lemma 4 leads to the following main statement.

Theorem 1. The following value is constant for every 2×2 submatrices

(
πi,j πi,j+1

πi+1,j πi+1,j+1

)
on MICK.

1

πi,j + πi+1,j + πi+1,j + πi+1,j+1
log

πi,jπi+1,j+1

πi+1,jπi,j+1

We name this common value “extended log odds ratio”.

Proof of Theorem 5: The stationary condition for the optimization problem (P ) is

∀ϵ(≪ 1), i, j, i′, j′, ϵ log
πi,jπi+1,j+1

πi+1,jπi,j+1
− δ log

πi′,j′πi′+1,j′+1

πi′+1,j′πi′,j′+1
= 0

Therefore, we obtain

πi′,j′ + πi′+1,j′ + πi′+1,j′ + πi′+1,j′+1

πi,j + πi+1,j + πi+1,j + πi+1,j+1
log

πi,jπi+1,j+1

πi+1,jπi,j+1
− log

πi′,j′πi′+1,j′+1

πi′+1,j′πi′,j′+1
= 0

Hence,

log
πi,jπi+1,j+1

πi+1,jπi,j+1

πi,j + πi+1,j + πi+1,j + πi+1,j+1
=

log
πi′,j′πi′+1,j′+1

πi′+1,j′πi′,j′+1

πi′,j′ + πi′+1,j′ + πi′+1,j′ + πi′+1,j′+1
.

Note that both sides of the equation has the same form for (i, j) and (i′, j′).

4



For comparison, the similar derivation can be applied to minimum information copula under fixed
Spearman’s rho, studied by Piantadosi et al. [Piantadosi et al.(2012)Piantadosi, Howlett and Borwein].
In this case, the extended log odds ratio coincides with the normal log odds ratio since the variation
of Spearman’s rho by the mass transportation Tij becomes a constant. Furthermore, we can explicitly
calculate its log odds ratio and confirm this fact because the form of the optimal solution is known in
previous studies:

πij = AiBj exp

(
12θ(i− 1

2
)(j − 1

2
)

)
.

It is easy to check

log
πijπi+1,j+1

πi+1,jπi,j+1
= θ (constant).

4 Total Positivity

Total positivity(TP) is one of the notions of positive dependence, extensively studied for copulas and
other general functions.

Definition 1 (TP2). We say a function f : R2 → R belongs to TP2 when f(x, y) ≥ 0 and∣∣∣∣f(x, y) f(x, y′)
f(x′y) f(x′, y′)

∣∣∣∣ ≥ 0 (x < x′, y < y′). For matrices, it is called TP2 if its minors (determinant

of principle submatrices) of order 2 are non-negative.

The following lemma is direct from the definition of TP2.

Lemma 3. A matrix is TP2 if and only if its 2× 2 submatrices are all TP2.

A copula C is said to be TP2 if the copula itself belongs to TP2:

C(x, y)C(x′, y′)− C(x, y′)C(x′, y) ≥ 0 (x < x′, y < y′),

and d-TP2 (density TP2) if its density c satisfies

c(x, y)c(x′, y′)− c(x, y′)c(x′, y) ≥ 0 (x < x′, y < y′).

Theorem 2. MICK belongs to d-TP2.

Proof of Theorem 2: Let a copula P ∗ = (p∗ij) be a MICK. All entries are positive. From Theorem 8,
P ∗ is also an optimal solution of (RP ). Assume P ∗ is not d-TP2. Then, there exists a 2×2 submatrix
of P ∗ such that its determinant is negative:

∃ i, j ∈ {1, . . . , n− 1}, p∗ijp
∗
i+1j+1 − p∗i+1jp

∗
ij+1 < 0 ⇔ log

p∗ijp
∗
i+1j+1

p∗i+1jp
∗
ij+1

< 0.

From Lemma 1, 2 and 4, this indicates P ∗ + Tij achieves smaller value and larger Kendall’s tau than
P ∗. This contradicts with the optimality of P ∗.
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