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Key Points: 

 

1) At NOAA’s Barrow Observatory in Alaska, the annual temperature during 2015-2020 

was about 3.37 oC higher than in 1985-1990. 

 

2) Virtually all the upward changes in annual temperature through 2015 can be attributed 

to higher CO2 concentrations.  

 

3) The model’s out-of-sample hourly temperature predictions are highly accurate, but this 

accuracy is significantly degraded if the estimated effects of CO2 are largely ignored.    
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Abstract 

 
According to the IPCC and other leading scientific organizations, “it is extremely likely that 

human influence has been the dominant cause of the observed increase in global temperatures 

since the mid-20th century.” One gap in the research underlying this assessment is that the 

statistical relationship between CO2 concentrations and the hourly temperature has not been 

rigorously investigated. Addressing this gap in the research is challenging because the hourly 

temperature data are noisy, which makes it difficult to extract the CO2 signal. Yet, this challenge 

needs to be resolved to advance climate science (including the emerging science of climate 

attribution) and public policy. The latter issue is especially important given that a significant 

percentage of the population does not fully embrace the scientific consensus on climate change. 

 

 This paper examines the relationship between CO2 concentrations and hourly temperature using 

data from the Barrow Atmospheric Observatory in Alaska, USA. It is first noted that the average 

annual temperature at Barrow over the 2015-2020 period was about 3.37 oC higher than in the 

1985-1990 period. The analysis employs solar irradiance (a key driver of the weather and climate 

system), CO2, and temperature data. Possible non-anthropomorphic drivers of annual 

temperature are also considered. The data are analyzed using an ARCH/ARMAX  (      

Autoregressive Conditional Heteroskedasticity/ Autoregressive–Moving-Average with 

Exogenous Inputs  )  approach. This statistical method captures the data’s heteroskedastic and 

autoregressive nature, which would otherwise “mask” CO2’s  “signal”  in the noisy data. The 

model is estimated using hourly data from 1985 through 2015. The results are consistent with the 

hypothesis that increases in CO2 concentration levels have consequences for hourly temperature. 

The model is evaluated using data from January 1, 2016, through December 31, 2021. The 

model’s out-of-sample hourly temperature predictions are highly accurate. However, this 

accuracy is significantly degraded if one accepts the claim that the effect of CO2 on temperature 

is small in magnitude. The implications for selected global locations are assessed using Vector 

Autoregressive temperature models coupled with Granger Causality tests.   

 

 

 

Plain Language Summary 

This paper examines the relationship between CO2 concentrations and hourly temperature using 

data from the Barrow Atmospheric Observatory in Alaska, USA. It is first noted that the average 

annual temperature at Barrow over the 2015-2020 period was about 3.37 oC higher than in the 

1985-1990 period. The analysis employs hourly solar irradiance, CO2, and temperature data. The 

model controls for possible non-anthropomorphic drivers of annual temperature and other 

factors. The model was estimated using hourly data from 1 Jan 1985 through 31 Dec 2015. The 

estimated effects of CO2 are highly statistically significant, while the non-anthropomorphic 

drivers, exclusive of solar irradiance, are quantitatively unimportant. The model is evaluated 

from 1 Jan 2016 through 31 December 2021. The model’s out-of-sample hourly temperature 

predictions are highly accurate. However, this accuracy is significantly degraded if one accepts 

the claim that the effect of CO2 on temperature is small in magnitude. The implications for the 

hourly temperatures at lower latitudes are assessed using an econometric model.  
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1. Introduction  

 

According to the IPCC assessment of the literature on climate change, “It is extremely likely that 

human influence has been the dominant cause of the observed increase in global temperatures 

since the mid-20th century “(IPCC, 2013, p.  17 ). However, one gap in the research is that the 

statistical relationship between hourly CO2 concentrations and the hourly temperature has not been 

rigorously investigated. Addressing this gap in the research is challenging because the hourly 

temperature data are noisy, which makes it difficult to extract the CO2 signal. Yet, this challenge 

needs to be resolved to advance climate science (including the emerging science of climate 

attribution) and public policy. The latter issue is especially important given that a significant 

percentage of the population does not fully embrace the scientific consensus on climate change. 

For example, in Alaska, the geographic focus of this study, only about 51 % of the respondents to 

a 2021 survey conducted by the Yale Program on Climate Change Communication (      

https://climatecommunication.yale.edu/visualizations-data/ycom-us/                    )  indicated 

https://climatecommunication.yale.edu/visualizations-data/ycom-us/
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agreement with the statement, “ Global warming is caused mostly by human activities.” While the 

51% value is higher than the corresponding value of 44% in Wyoming, it underrepresents the 

scientific community's views, which poses challenges to implementing policies to reduce 

emissions. 

 

The paper is organized as follows. Section 2 discusses the data used in the analysis. The 

trends in hourly temperature, downward total solar irradiance, and CO2 concentrations at the 

Barrow Atmospheric Observatory are reported to provide context. The annual temperature at the 

nearby Barrow Airport from 1921 through 2020 is reported. The time-series nature of hourly 

temperature at Barrow is also discussed to facilitate the modeling discussion in the remaining 

sections of the paper. Section 3 discusses the spatial nature of the data. Section 4 introduces a 

modeling framework to examine the possible association between CO2 concentrations and hourly 

temperature at the Barrow Observatory. Section 5 discusses the estimation process and also 

presents the results. Section 6 presents an alternative model that excludes CO2 as a covariate. It is 

concluded that this model specification is inferior to the specification in which CO2 is included as 

a covariate. Section 7 presents an out-of-sample evaluation of the model. Section 8 evaluates the 

implications of the results for lower latitudes. Section 9 summarizes the findings and presents a 

possible path for future research.  

 

 

2. An Overview of the Changing Climate in Northern Alaska 

 
The study employs temperature, solar radiation, and CO2 data reported by the Barrow (BRW) 

Atmospheric Observatory. This is one of the baseline observatories of the Earth System Research 

Laboratory (ESRL), Global Monitoring Division (GMD), of the National Oceanic and 
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Atmospheric Administration (NOAA). It is located near sea level about 8 km east of Utqiaġvik 

(formerly Barrow), Alaska at 71.3230 degrees north and 256.6114 degrees West (Vasel et al., 

2020). Continuous atmospheric measurements of CO2 have been recorded at this observatory since 

July 1973 (Thoning et al., 2021). Herbert et al. (1986) discuss how the data are processed. Peterson 

et al. (1986) discuss operations' first ten years (1973-1982) and report the consistency of the  

Barrow results with the reported data from four neighboring locations. Tans and Thoning (2020) 

provide a general overview of the methods used to collect and process the CO2 data at Mauna Loa, 

one of NOAA’s other baseline observatories. Along with the hourly temperature data 

corresponding to BRW, the CO2 data for BRW were downloaded using the following link: 

(http://www.esrl.noaa.gov/gmd/dv/data/  ). 

 

 

Measurements of downward total solar irradiance at the Earth’s surface have been reported at the 

BRW observatory since January 1976. Before 1998, the data were reported at three minute 

intervals. The data were subsequently reported at one-minute intervals. For this study, the reported 

values were rolled up to hourly averages. Data were dropped from the analysis if the number of 

valid minutes of data for an hour was less than 15.  

 

Consideration was given to the inclusion of CH4 data in the analysis. This action would have 

resulted in the loss of 26,381 hourly observations due to unavailable or invalid CH4 measurements. 

(the collection of the CH4 data commenced in 1986 but was suspended for about nine months in 

2012/2013). The probable effect of this data loss on model convergence was an important 

consideration in excluding this variable from the analysis, model convergence being one of the 

major challenges of the methodology employed in this paper (STATA, 2021, p. 33). The omission 

http://www.esrl.noaa.gov/gmd/dv/data/
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of  CH4  and other variables reflecting greenhouse gas concentrations represents a shortcoming in 

the analysis.  

 

The sample for this study spans from 1 Jan 1985 through 31 Dec 2015. Data before 1 Jan 1985 

were not employed in this study because the reported downward total solar irradiance data largely 

did not meet ESRL’s standards before that date. For example, only about 31% of the downward 

total solar irradiance values in 1984 were deemed by ESRL to be valid. The 1 Jan 2016 - 31 

December 2021 time interval is reserved for out-of-sample analysis.  

 

In thinking about meteorological issues at BRW, it is useful to begin by first noting the 

extremes and high variability levels in the downward total solar irradiance at this location. 

Regarding variability, the data from 2014 is instructive (Figure 1). Concerning the extremes, 

there are about 67 days of virtually total darkness each year ( about 18 Nov to 22 Jan), while the 

sun does not completely set from about 11 May to 31 Jul.  
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Figure 1. The level of hourly downward total solar irradiance at BRW, 1 Jan 2014 – 31 Dec 2014 

 

The average annual temperature at BRW  has increased significantly since 1985 (Figure 2). 

Specifically, the average annual temperature over 2015-2020 was about 3.37 oC higher than in 

1985-1990. The temperature data reported by the  PABR weather station at the nearby Barrow 

Airport from 1985 through 2020 are consistent with the trend at BRW (Figure 3). The PABR data 

also indicates that the four warmest years since 1921 occurred in 2016, 2017, 2018, and 2019. In 

these four years, the average annual temperature was about 5.03 o C higher than the average annual 

temperature from 1921 through 1939. These findings do not support the assertion by Lindzen that 

the recent warming is about the same as before the 1940s (2020, pp. 12-13). In terms of the 

magnitudes of the recent warming, the increases are consistent with  Arctic amplification, as 

explained by Pithan & Mauritsen (2014) and Winton (2006). 
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The upward trend in temperature at both BRW and PABR  is consistent with the temperature trend 

for the Arctic noted by Post et al. (2019), Markon et al. (2018, p 1190-1192), and Thoman et al. 

(2020, p. 4). Box et al. (2019) have reported significant changes in nine key measures of the Arctic 

climate system from 1971 through 2017. The qualitative story is clear: “the transformation of the 

Arctic to a warmer, less frozen, and biologically changed region is well underway.” (Thoman et 

al., 2020, p. 1).   

According to AMAP, “Arctic warming can also have effects far beyond the region: for example, 

the recent rapid warming of the Arctic appears to have created conditions favoring a persistent 

pattern in the jet stream that provokes unusual extreme temperature events in the Northern 

Hemisphere.” (AMAP, 2019, p. 4). Taylor et al. (2017, p. 303) have indicated that it is very likely 

that human activities have contributed to these trends. While the literature supports this finding, it 

has also been suggested that the significant natural weather and climate variability in the Arctic 

poses an attribution challenge (Taylor et al., 2017, p. 319). Consistent with this reported variability, 

both downward total solar irradiance and temperature at the hourly level are highly variable 

(Figures 4 and 5). Concerning the hourly CO2 concentration levels, there is a significant upward 

trend in the hourly CO2 concentration levels over the sample (Figure 6). The two variables have 

no visually obvious relationship despite the upward trend in CO2 concentrations and temperature 

(Figure 7). While some climate deniers may be tempted to claim that the data in this figure 

vindicates their position, the view here is that a lack of correlation between two variables does not 

rule out a causal relationship between the variables.   
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Figure 2. The average hourly temperature at the Barrow Observatory, 1985 -2020 

 

 

 

 

 



 

9 

 

 
 
Figure 3. The average annual temperature at the PABR/Barrow Airport  weather station, 1921 -

2020 

 
Figure 4. The hourly temperature at the Barrow Observatory, 1 Jan 1985 – 31 Dec 2016 
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Figure 5. Hourly downward total solar irradiance levels at the Barrow Observatory, 1 Jan 1985 – 

31 Dec 2016 

 
 
Figure 6. Hourly CO2 concentration levels at the Barrow Observatory, 1985 -2019 
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Figure 7. A scatter diagram of hourly temperature and CO2 concentration levels at BRW, 1 Jan 

1985 – 31 Dec 2015 

 

 

The autocorrelative nature of hourly temperature is an important characteristic of the data (Figure 

8). As the figure indicates, the autocorrelative process's magnitude and duration are significant. In 

terms of magnitude, the estimated one-hour autocorrelation in temperature equals 0.9970, a value 

that is so large that it is reasonable to wonder if there is a unit root issue. If this is indeed the case, 

the results of this study could be spurious for the reasons explained by Kennedy ( 2008,  p. 301). 

Fortunately, an Augmented Dickey-Fuller test yields a P-value that is less than 0.0001 both with 

and without a possible trend, and thus the null hypothesis of a unit root is rejected. Consistent with 

this finding, the Phillips-Perron test for a unit root also yields a P-value less than 0.0001, both with 

and without a possible trend.   

While the available tests do not support the null hypothesis of a unit root in the hourly 

temperature data, a quantitative analysis of hourly time-series temperature data needs to control 

for its time-series nature to effectively extract the signal from the noise in the data. The method 
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of ordinary least squares is woefully deficient in this regard. This point is consistent with a 

warning by Granger and Newbold (1974, p. 117), who note the following: “In our opinion the 

econometrician can no longer ignore the time series properties of the variables with which he is 

concerned ‐ except at his [ or her ] peril.” The consequences of ignoring their warning include 

inefficient estimates of the regression coefficients, suboptimal forecasts, and invalid tests of 

statistical significance. Unfortunately, an inspection of “Statistical Methods in the Atmospheric 

Sciences,” authored by Wilks (2019), suggests that this warning has not been fully heeded in the 

atmospheric sciences.   

 

 
Figure 8. The autocorrelations in hourly temperature at Barrow, 1 Jan 1985 – 31 Dec 2015 
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3. The Spatial Properties of the Data 
 

In this paper, the analysis focuses on a single temperature record in the Arctic, a region that many 

researchers believe is highly sensitive to greenhouse gases. One advantage of this approach is that 

it facilitates the analysis of hourly temperature, the bedrock of all the temperature records climate 

scientists consider, and thus is immune to the loss of information that occurs when annual averages 

are calculated. Some researchers may object to this approach because it may seem to ignore the 

temperature exchange between the Arctic and the lower latitudes. At first glance, this objection 

may appear reasonable. However, it misses the point that downward solar radiation at the Earth’s 

surface, a key driver of hourly temperature,  is also subject to systematic variation across latitudes, 

as evidenced by Granger Causality Wald tests. The tests were conducted between the incoming 

solar radiation at Barrow and the incoming solar radiation levels at the NOAA observatories in 

Hawaii and  American Samoa using hourly data from 1 January 1985 through 31 December 2020. 

For those unfamiliar with the Granger Causality methodology, the test is based on whether the 

lagged values of some variable X are useful in predicting the current value of some variable Y 

(Granger, 1969). Because of its focus on the lagged values, the methodology does not contest the 

truism that correlation between two contemporaneous variables does not imply causation. 

Applying this methodology to the spatial values of downward solar radiation indicates that both 

data series exhibit two-way Granger Causality with the downward solar radiation levels at Barrow 

even though the spatial correlations are modest (Table 1 . It is worth noting that these results make 

it possible to improve the out-of-sample prediction of these short-wave radiation levels (see the 

far-right columns of Table 1). For example, the out-of-sample skill score associated with predicting 

the downward short-wave radiation level at MLO based on the lagged outcomes at  BRW and 

MLO  equals 0.750. A skill score of this magnitude is a respectable outcome given that a useless 
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predictive method would have a skill score of zero, while a perfect method would have a score of 

unity  (the value is calculated using a persistence forecast of the downward short-wave radiation 

at MLO as a reference). 

 

In short, the evidence supports the view that the atmospheric conditions at lower latitudes (Barrow) 

reflect the atmospheric conditions at Barrow (lower latitudes). Concerning hourly temperature, the 

analysis presents evidence that the temperature at BRW exhibits two-way causality with the 

temperatures at MLO and SMO. These results are presented in Table 3, which also reports on this 

phenomenon using data from 15 other observatories.  

 

Table 1. 

Results of Granger Causality Wald Tests in terms of hourly  downward solar radiation at 

Barrow  and the outcomes at   SMO and MLO, January 1, 1985 – December 31, 2015 

Locations Spatial 

Correlation 

The null 

hypotheses of 

no two-way 

Granger 

Causality in 

terms of 

hourly 

temperature 

Predictive Skill Score 

associated with an 

hour-ahead 2021 

down radiation  

prediction for the 

non-BRW location 

making use of the 

BRW and the  non-

BRW lagged 

outcomes ( a 

persistence prediction 

of the non-BRW 

downward radiation 

level is a reference) 

Predictive Skill 

Score associated 

with an hour-

ahead 2021 down 

radiation  

prediction for the 

BRW location 

making use of the 

BRW and the non-

BRW lagged 

outcome ( a 

persistence 

prediction of the 

BRW downward 

radiation level is a 

reference) 

Barrow(BRW) 

and Mauna Loa 

(MLO) 

 0.602 Rejected with   

P values < 

0.001 

0.750 0.548 

Barrow(BRW) 

and American 

Samoa(SMO) 

 0.383 Rejected with   

P values < 

0.001 

0.576 0.595 

Note: The out-of-sample evaluation period makes use of about 14,000 observations between 1 

Jan 2016 through 31 Aug 2017 
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Interestingly, the findings of Granger Causality in the factors that affect temperature across 

latitudes are not limited to downward solar radiation. For example, using data from NOAA’s tall 

towers project https://gml.noaa.gov/outreach/behind_the_scenes/towers.html  ), it is easily 

established that the null hypothesis of no two-way Granger Causality is rejected regarding the 

hourly CO2 concentration levels at BRW and the levels at the WKT tower in Texas, the levels at 

the AMT tower in Maine, the levels at the WGC tower in  California, the levels at the WBI tower 

in Iowa,  the levels at the SNP tower in Virginia, the levels at the SCT tower in  South Carolina, 

and the levels at the LEF tower in  Wisconsin.  

 

Given the overall Granger Causality findings, the ideal approach to estimate the effects of CO2 on 

hourly temperature would be a systems approach that simultaneously estimates an equation for 

each location worldwide. The theoretical advantage of this approach is not the absence of bias in 

the estimates but the improved efficiency of the estimates since the estimated parameters in each 

equation reflects the information in the other equations. In the absence of the need to help model 

the autocorrelations presented in Figure 8, an  MGARCH analysis would be an appropriate 

approach because it enables the analysis of multiple dependent variables (Baum and Hurn, 2021, 

pp. 245-251; Bauwens, et al., 2006 ). Unfortunately, the MGARCH procedure does not support 

the required  MA modeling procedure to make this possible. The MGARCH procedure also does 

not support the ARCH-in-mean procedure that allows one to model the possible linkage between 

the conditional variance and the conditional hourly mean. For these reasons, the analysis will 

proceed by estimating an ARCH/ARMAX model in which a measure of hourly temperature at 

Barrow is the sole dependent variable. Based on the Granger Causality spatial findings, the 

ARCH/ARMAX results for BRW can be expected to have implications for locations at lower 

https://gml.noaa.gov/outreach/behind_the_scenes/towers.html
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latitudes. While some may view this approach with disdain, it can yield out-of-sample findings 

that may be taken more seriously than the results from a global model that relies on 100 or so 

observations of annual data. For those concerned about potential bias, attention should be given to 

the accuracy of out-of-sample predictions, given that bias has adverse consequences for predictive 

accuracy.  

 

 
 

 

4. An ARCH/ARMAX Model of Hourly Temperature 

 
The model employed in this paper is an Autoregressive Conditional Heteroskedasticity/ 

Autoregressive–Moving-Average with Exogenous Inputs model of temperature (henceforth, an 

ARCH/ARMAX model of temperature). The ARCH  terms are employed to model the conditional 

heteroskedasticity, a phenomenon in which the variance of the error term in the model is not 

constant over time but instead varies in a predictable way. ARCH models are estimated using the 

conditional maximum likelihood approach. Please see Baum and Hurn(2021, p.  232 ) for a general 

overview or Hamilton (1994, pp. 660-665) for a more detailed explanation of the approach. The 

method was devised to improve the modeling of financial and economic data but has proven 

invaluable in modeling any time-series variable in which there are periods of turbulence followed 

by a relative calm at some point. The second component of the time-series method is the 

autoregressive–moving-average (ARMA) method, which models the autocorrelations in the 

dependent variable based on autoregressive (AR) terms and moving average (MA) terms. A 

relatively simple example of this approach is an ARMA(1,1) process illustrated in equation (1), in 

which  Wt is the dependent variable in time period t. Observe that Wt depends on its lag, Wt-1. It 
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also depends on 𝜖𝑡, the residual error term in period t and its lag, 𝜖𝑡−1. In this equation, the 

coefficient 𝜑1 is the AR term while 𝜃1  is the MA term.   

 

𝑊𝑡 = c + 𝜑1𝑊𝑡−1 +  𝜃1𝜖𝑡−1 +  𝜖𝑡                                         (1) 

 

Including the model’s exogenous inputs, an ARCH/ARMAX model can be represented 

using two equations. In the case of hourly data, the first equation models the conditional hourly 

mean  while the second models the conditional variance.   Following Engle et al. (1987), the 

conditional variance or its transformation may also affect the conditional hourly mean, a 

phenomenon known as an ARCH-in-mean effect. A possible illustration of the overall modeling 

approach when the natural logarithm of  yt is the dependent variable, and there are J exogenous 

inputs in the conditional hourly mean equation and K exogenous inputs in the conditional variance 

equation  is 

ln (𝑦𝑡) =  ∑ 𝑥𝑗,𝑡𝑗 𝛽𝑗 + ∑  Ψ𝑖𝑖  𝑔(𝜎𝑡−𝑖
2 ) + ∑ 𝐴𝑅(𝑝) +  ∑ 𝑀𝐴(𝑞)𝑄𝑃  + 𝜖𝑡               (2) 

𝑉𝑎𝑟(𝜖𝑡) = 𝜎𝑡
2 = ∑ 𝑍𝑘,𝑡𝑘 𝛽𝑗 + 𝛾1𝜖𝑡−1

2                                    (3) 

where  the 𝑋𝑗′𝑠   represents the exogenous inputs in the conditional hourly mean equation, the 𝑍′𝑠 

are the exogenous inputs in the conditional variance equation, 𝑔(𝜎𝑡−𝑖
2 ) is the function that reflects 

the conditional variance, Ψ𝑖 represents the estimated ARCH-in-mean coefficient  for period t-i 

(where i could be equal to 0, 1,2,3 etc. ), ∑ 𝐴𝑅(𝑝) and ∑ 𝑀𝐴(𝑞) 𝑄𝑃 are the sums of the 

autoregressive and moving average terms, with p and q being the selective lags corresponding to 

the AR and MA terms, respectively. These equations are only illustrative. The various components 

of these equations are discussed in more detail below. In particular, much of the analysis will focus 

on whether the linear form of the 𝑋𝑗 ‘s is appropriate.  



 

18 

 

 

Following from  Forbes and St. Cyr ( 2017, 2019) and Forbes and Zampelli (2019, 2020), the 

modeling approach employed in this paper accepts the proposition that “All models are wrong; 

some models are useful” (Box et al., 2005, p. 440). They are all “wrong” because they represent a 

simplification of reality; they can be useful if important features of that reality are captured. In the 

case of this research, it may be asserted that the results presented here are “wrong” because the 

methods rely on data from a single location. The model may be deemed “wrong” because of 

“specification errors,” “multicollinearity,” “autocorrelation,” “heteroskedasticity,” “overfitting,” 

and “unit-root issues.” Other readers may conclude that the model is “wrong” because it somehow 

“forces” the estimated relationship between CO2 concentrations and temperature to be positive 

because both are rising over time ( note: the correlation between temperature and CO2 equals -

0.1495). Still, others will argue that the results are “biased” because the model’s dependent 

variable is the natural logarithm of temperature, even though there are recognized methods to 

remove that bias (Baum and Hurn, 2021, pp. 169-170 ). 

Following Forbes and Zampelli (2020, p. 13), this paper accepts the proposition that the 

“…vulnerability of a model to be deemed as wrong even though all models are “wrong” represents 

a challenge to the recognition of insights provided by models that are useful.” Fortunately, this 

challenge can be addressed by assessing a model’s out-of-sample predictive accuracy. Common 

sense informs us that a model that yields accurate predictions is useful if the out-of-sample 

evaluation interval is sufficiently long. Based on this perspective, the approach in this paper 

proceeds by estimating a model with hourly 228,085 observations and performing an out-of-

sample analysis with 33,437 hourly observations.  
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The proposition that “all modeling results can easily be dismissed out of hand as being wrong, 

even if they are useful” may have implications for climate science in general. As almost all climate 

scientists will attest, countless studies support the scientific consensus. Climate deniers are unfazed 

by this evidence because they can always point out a real or imagined flaw in these studies as 

evidence that the scientific consensus concerning climate change is “wrong.”  In this policy 

environment, the conclusions flowing from the standard approach taken by climate scientists will 

always be open to question. In Lawson’s words, 

“Climate scientists “can put forward the evidence, but they cannot force their 

audience to agree with them. They can point to the fact that carbon dioxide is a 

greenhouse gas, that its levels in the atmosphere have risen by 40% since the 

Industrial Revolution, and that we can only account for the recent rise in global 

temperatures by including the enhanced greenhouse effect alongside known natural 

factors such as solar variability and ocean currents. They can point to the observed 

patterns of warming as consistent with warming due to greenhouse gases in contrast 

to other possible causes of warming. But in the end, the reasoning is inductive, not 

deductive. It is not proof. “(Lawson, 2014) 
 

In short, climatologists can continue presenting unpleasant facts about climate change to decision-

makers, but vocal and well-funded climate deniers can always object to the findings. Given this 

reality, Lawson suggests that attention be given to a null hypothesis that carbon dioxide does not 

significantly affect temperature.   This approach, embraced in this paper, while apparently novel 

in climate science, is essentially the approach that statisticians employ in testing hypotheses. To 

be clear, some researchers, such as  Stern and Kaufmann (2014), have employed this approach 

using annual data. However, their reliance on annual data with only 162 observations essentially 

made it impossible to verify the rejection of the null hypothesis using out-of-sample data.  

 

In the model, the association between CO2 concentrations and hourly temperature is presumed 

conditional on the downward total solar irradiance measured at the Earth’s surface, downward total 
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solar irradiance being the primary driver of the weather and climate system. The other drivers of 

the surface energy balance, such as upward and downward longwave irradiance, are not included 

as explanatory variables in the model because they are hypothesized to be affected by CO2 

concentrations. Upward short-wave irradiance is not hypothesized to be directly affected by CO2 

concentrations. Its inclusion as an explanatory variable is open to question, given that it is largely 

driven by downward solar irradiance and temperature.   

In the structural component of equation (2), the  CO2 concentration level is an exogenous 

input. It is lagged one hour to avoid the issue of possible two-way causality between temperature 

and CO2 concentrations. Other structural inputs in equation (2)  include binary variables 

representing the solar zenith angle, the hour of the day, the day of the year, and the year. These 

variables are included as proxies for the drivers of the diurnal variation in temperature, the seasonal 

variation in temperature, and the possible non-anthropomorphic drivers of temperature unrelated 

to total downward solar irradiance. In terms of functional form, linearity is not presumed.   Instead, 

the data are permitted to speak for themselves on this important issue.  

 

The initial specification of the exogenous inputs in (2) and their possible relationship with a 

measure of hourly temperature is given by: 

lnTempt  = α0  + α1 ZeroSolart   + α2 Solart +  α3 (CO2t-1*ZeroSolart)  

 

+  α4 (CO2t-1*PosSolart)  +  α5 Solart * CO2t-1  +         ∑ βhAngleh 
9
h=1      

 

+   ∑ ϕiHourofDayi 
24
i=2  +  ∑ γjDOYj 

365
j=2  +     ∑ δkYeark

2014
k=1985        (4) 

 

 
Where 

lnTempt is the natural logarithm of temperature measured in Kelvin in hour t. 

 

ZeroSolart  is a binary variable. The variable is assigned a value of one if the downward total 

solar irradiance level at Barrow in period t equals zero. Its value equals zero otherwise. 
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Solart equals the downward total solar irradiance level at Barrow in period t. 

 

CO2t-1 is the atmospheric level of CO2 concentrations at Barrow in hour t-1.  

 

PosSolart is a binary variable that equals one if the level of downward total solar irradiance at 

Barrow in period t is positive. Its value equals zero otherwise. 

 

Angleh  is a vector of nine variables representing the solar zenith angle. 

 

HourofDayi  is a series of 23 variables representing the hour of the day. 

 

DOYj  is a series of 364 binary variables representing the day of the year. 

 

Yeark is a series of  30  binary variables representing the year of the sample. 

 

Please note that α1, α2, and α3, etc., are the coefficients corresponding to this linear specification of 

the exogenous inputs.   From (4), the total number of structural coefficients to be estimated equals 

432. Some may strongly suspect that this number of explanatory variables indicates that the model 

is ”overfitted.”   If this claim is true, the model would be unlikely to yield accurate out-of-sample 

predictions even if the within-sample explanatory power is very high (Brooks, 2019, p. 271). The 

“rule of thumb” by Trout (2006)  that overfitting is avoided when there are at least ten observations 

per estimated coefficient does not support this possible suspicion, given that the structural model 

present in this paper entails over 500 observations per estimated coefficient. Moreover, as will be 

seen, the model does not suffer from the consequences of overfitting in terms of out-of-sample 

predictive accuracy.  
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5. Estimation and Results 

 
The model was estimated using hourly data over the 1 Jan 1985 - 31 Dec 2015 time interval. The 

analysis was conducted in two distinct stages. In the first stage,  the linear specification of the 

exogenous inputs given by Eq. (4) is evaluated. The second estimation stage recognizes that the 

other components of equations (2) and (3). Concerning the ARMA components in equation (2), it 

is worth noting that the specifications applied in this paper are not parsimonious because the 

autocorrelative process in Figure 8 is not short in duration. It is recognized that this approach runs 

counter to the traditional time-series philosophy (Box and Jenkins, 1976, p. 17), which suspected 

that there was more room for prediction errors when more time-series parameters were estimated 

(Hamilton, 1994, p. 106). The view here is that the goal of predictive accuracy can sometimes be 

enhanced by including more ARMA terms. This approach makes sense given the relatively long 

memory property of the autocorrelations evidenced in Figure 8. The structural heteroskedasticity, 

i.e., the Z’s in equation (3),  is modeled as a function of the solar zenith angle, the hour of the day, 

the day of the year, the year of the sample, and the following variables: √𝐶𝑂2𝑡−1, √𝑆𝑜𝑙𝑎𝑟𝑡 . 

Instead of assuming that hourly temperature is independent of the conditional variance, the model 

permits the data to speak for itself on this issue. The ARCH-in-mean effects, i.e., the expression  

∑  Ψ𝑖𝑖  𝑔(𝜎𝑡−𝑖
2 ) in equation (2) has the potential to capture this linkage.  

 

The possible merits of representing the explanatory variables using a nonlinear specification are 

addressed using the multivariable fractional polynomial (MFP) methodology (Royston and 

Sauerbrei, 2008). The procedure works by cycling through a battery of nonlinear transformations 

of the explanatory variables until the model that best predicts the dependent variable is found. In 

the present case, the set of exponents that the procedure considered include 0.25, 0.3333, 0.5, 

0.6666, 0.75, 1, 1.5, 2, 2.5, and  3. Recent applications of this method include Forbes and St. Cyr 
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(2017, 2019) and Forbes and Zampelli(2019, 2020). In the present case, the MFP results suggest 

the following specification:  

 
lnTempt  = 𝛼0

′
   +  𝛼1

′  ZeroSolart  +  𝛼2
′ Solart

1/4
 +   𝛼3

′  (CO2t-1*ZeroSolart)
3  

 

+   𝛼4
′  (CO2t-1*PosSolart)

1/4   +  𝛼5
′

 (Solart * CO2t-1 )
1/4  + ∑ 𝛽ℎ

′ Angleh 
9
h=1    

 

 +   ∑    ϕ𝑖
′  HourofDayi 

24
i=2  +  ∑   γ𝑖

′ DOYj 
365
j=2  +     ∑   δ𝑘

′  Yeark
2014
k=1985                              (5) 

                 

 

 
Please note that 𝛼1

′ ,   𝛼2
′ ,  and 𝛼3

′    etc., are the estimated coefficients in this specification. Least 

squares estimation of (5) produces a seemingly respectable level of explanatory power, the  R2 

being about 0.831. However, a Portmanteau test for autocorrelation (Box and Pierce, 1970; Ljung 

and Box, 1978) reveals that the residuals are highly autocorrelated. Consistent with Forbes and St. 

Cyr (2019, p.17), for lags one through 100, the P values are less than 0.0001. The null hypothesis 

of no ARCH effects is rejected with a P-value less than 0.0001. Consistent with these issues, the 

least-squares model is not useful. This finding is supported by out-of-sample predictions with an 

RMSE of about 5.67 o C,  a value clearly indicative of a suboptimal prediction process.  

 

 

ARCH/ARMAX methods can generate predictions that are much more accurate than those from 

a least-squares model when the dependent variable is autoregressive and heteroskedastic. In this 

case, the ARCH process’s modeled lag lengths are 1 and 2. Consideration was given to including 

additional ARCH terms to model the apparent diurnal pattern of the ARCH process (e.g., 24, 48, 

72, 96, etc.). Consideration was also given to employing alternative ARCH  and GARCH 

specifications. These approaches were abandoned due to model convergence issues. The 
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modeled lag lengths for the AR process are 1 through 12, 23, 24, 25, 26, 47, 48, 49, 71, 72, 73, 

96, 97, 120, 121, 144, 145, 167, 168,169, 192, 193, 216, 240, 264, 288, 312, 335, 336, 337, 360, 

384, 408, 432, 456, 480, 600, 671, 672, 673, 840, and 960. The MA modeled lag lengths are 1 

through 25, 48, 49, 71, 72, 73, 96, 97, 120, 121, 144, 145, 167, 168, 169, 192, 193, 216, 240, 

264, 288, 312, 335, 336, 337, 360, 384, 408, 432, 456, 480, 600, 671, 672, 673, 840, and 960.   

The ARCH/ARMA model, i.e., equations (2) and (3) as amended by the MFP transformation, was 

estimated assuming that the residual error terms correspond to the Student t distribution instead of 

the more typical Gaussian distribution. This approach is believed to be justified by the highly 

volatile nature of the weather system in the vicinity of Barrow. One shortcoming in its application 

here is that the “degrees of freedom” parameter is less than the minimum indicated by Harvey 

(2013, p. 20).    Consideration was  given to modeling the residual error terms using the generalized 

error distribution, but this approach was abandoned due to model convergence issues.  

 

Selected estimates are reported in Table 2. It is revealed that  𝛼2  
′ , the coefficient corresponding to 

Solart
1/4 is positive and highly statistically significant.   The CO2-related coefficients 𝛼3     

′ and 𝛼4 
′  

are also positive and highly statistically significant while 𝛼5
′   is negative and highly statistically 

significant. These findings are consistent with the view that CO2 concentrations have implications 

for hourly temperature but do not address the magnitude. Concerning the possible non-

anthropomorphic drivers of temperature, it is interesting to note that  16 of the 30 variables in 

question are statistically significant. With 2015 being represented in the constant term, negative 

values for a year are consistent with higher predicted temperatures in 2015 than in the year in 

question. There are 13 such cases. The coefficients’ median value for these cases is -0.00543, 

which hardly seems important.  
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The model’s explanatory power based on the estimated structural parameters is  0.8105. The R-sq 

equivalence based on all the estimated parameters equals  0.9968. Those who believe that the latter 

level of explanatory power is somehow “too good to be true,” are cheerfully invited to reinspect 

Figure 8 and contemplate the concept of autocorrelation and how modeling this autocorrelation 

can affect a model’s level of explanatory power. In any event, the view here follows Hyndman and  

Athanasopoulos (2018, 3.4), who note that true adequacy… “ can only be determined by 

considering how well a model performs on new data that were not used when fitting the model.” 

It is also noted that even though a model’s R2  equivalence is a well-recognized measure of model 

adequacy, a good case can be made that achieving white noise in the residuals is also important ( 

Becketti, 2013, p. 256;  Kennedy, 2008, p. 315; and Granger and Newbold, 1974, p. 119). To 

assess whether this measure of adequacy is achieved, Portmanteau tests for autocorrelation were 

conducted for the hourly lags 1 through 100, 192, 284, and 672. At lag 1, the P-value is 0.1958. 

For the remaining 111 lags that were assessed, the P-values are less than .05, thereby rejecting the 

null hypothesis of a white noise error structure.  
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Table 2. Estimation Results 

Variable Estimated 

Coefficient  

Absolute 

Value of the t-

Statistic 

P-Value 

Constant term 5.465148 895.40 < 0.001 

ZeroSolart   0.053421 9.25 < 0.001 

Solart
1/4 0.01102 11.23 < 0.001 

(CO2t-1*ZeroSolart)
3 7.70E-11 7.57 < 0.001 

(CO2t-1*PosSolart)
1/4    0.01296 9.04 < 0.001 

(Solart * CO2t-1 )
1/4 -0.00232 10.42 < 0.001 

Year1985 -0.01111 9.96 < 0.001 

Year1986 -0.00371 2.36 0.018 

Year1987 -0.00983 6.91 < 0.001 

Year1988 -0.00808 6.87 < 0.001 

Year1989 -0.00498 1.76 0.079 

Year1990 -0.0033 1.47 0.141 

Year1991 -0.00285 1.82 0.068 

Year1992 -0.00664 2.21 0.027 

Year1993 -0.00265 2.52 0.012 

Year1994 -0.00339 2.47 0.014 

Year1995 -0.00384 4.43 < 0.001 

Year1996 -0.00305 1.73 0.083 

Year1997 0.001996 1.06 0.288 

Year1998 0.005733 3.48 0.001 

Year1999 -0.00766 4.34 < 0.001 

Year2000 -0.00543 4.26 < 0.001 

Year2001 -0.00359 2.97 0.003 

Year2002 0.002124 0.61 0.541 

Year2003 -0.00658 3.21 0.001 

Year2004 -0.00449 4.07 < 0.001 

Year2005 -0.00211 1.11 0.265 

Year2006 0.000883 0.33 0.743 

Year2007 0.005622 4.31 < 0.001 

Year2008 1.92E-06 0 0.999 

Year2009 0.002597 1.98 0.048 

Year2010 0.000847 0.38 0.707 

Year2011 0.001634 0.23 0.817 

Year2012 -0.00044 0.22 0.829 

Year2013 0.001147 0.46 0.643 
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Regarding the binary variables not reported above, 336 of the 364 day-of-the-

year coefficients are statistically significant, while  22 of the 23 hour-of-the-

day variables are statistically significant. Only three of the nine solar angle 

coefficients are statistically significant.  

Concerning the AR and MA terms, 44 of the 53 AR terms and 31 of the 61 

MA terms are statistically different from zero. Both of the ARCH terms are 

statistically significant. Only one of the three ARCH-in-Mean terms is 

statistically significant. Regarding the variables that model the 

heteroskedasticity in the conditional variance, 298 of the 429 variables are 

statistically different from zero. 

 

 

 

6. An alternative model that does not consider CO2 

This section considers an alternative model that does not consider CO2  as a covariate. As before, 

the dependent variable is the natural logarithm of temperature. Applying the MFP procedure to 

ensure the best structural fit, the form of the  equation is:  

 

 

lnTempt  = 𝛼0
′

   +  𝛼1
′  ZeroSolart  +  𝛼2

′ Solart
1/4

  

 

+ ∑ 𝛽ℎ
′ Angleh 

9
h=1    

 

 +   ∑    ϕ𝑖
′  HourofDayi 

24
i=2  +  ∑   γ𝑖

′ DOYj 
365
j=2  +     ∑   δ𝑘

′  Yeark
2014
k=1985                              (6) 

 

Year2014 0.002601                                      

1.40 

0.162 

Number of Observations 228,085   

AIC -2,278,373   

BIC -2,268,232   

R-Square equivalence 

based on the full model 
0.9968 

  

R-Square equivalence 

based on the model’s 

structural component. 

0.8105 
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An ARCH/ARMAX model based on equation (6) is estimated using the same time-series 

specifications and input data employed in the previous section, exclusive of the CO2-related 

variables. The values corresponding to the AIC (Akaike, 1974) and the BIC (Schwartz, 1978) 

statistics for this model specification are     -2,277,736 and -2,267,626. These AIC and BIC  

values are higher than those reported in Table 2. Based on the AIC and BIC literature, as 

reported by Kennedy (2008, p. 105), this indicates that the formulation that includes the CO2-

related variables is the better specification. 

 

 

 

7. The Model’s  Out-of-Sample Performance 

 

The out-of-sample evaluation period consists of  33,437 hours over the 1 Jan 2016 to 31 December 

2021 time interval. While the number of observations in this evaluation is substantial, there are 

significant gaps in the time series. For example, the required hourly data for 2019 are not currently 

available. Based on the relatively gap-free period of 2020 and 2021, there is a degree of confidence 

that the results presented in this section are not materially affected by the data gaps.  

 

The out-of-sample analysis begins by noting that the dependent variable in the model is the natural 

logarithm of temperature measured in Kelvin. A simple retransformation might seem to yield the 

optimal predicted value. Unfortunately, this can result in a biased prediction (Granger and 

Newbold, 1976, pp. 196-197). This bias is easily resolved when the error distribution is Gaussian 

using a method presented by Guerrero (1993). Given the non-Gaussian error distribution in this 

case, the matter was resolved by following Baum and Hurn (2021, p. 170), who recommend 



 

29 

 

estimating a post-processing regression without a constant term using all of the observations in the 

sample.. The estimated parameters from this regression was used to detransform the out-of-sample 

transformed predicted temperature values.  

The out-of-sample temperature predictions from the ARCH/ARMAX model presented in this 

paper have a predictive R-square equivalence of  0.9966. Consistent with this value, there is a high 

degree of visual correspondence between the period-ahead ARCH/ARMAX hour-ahead 

predictions and the actual hourly temperature (Figure 9). 

The out-of-sample predictions were compared with the ERA5T predictions for the same general 

location. For those unfamiliar with the ERA5T modeling results, they are produced by the 

Copernicus Climate Change Service at ECMWF. It represents an updated version of ERA5 

modeling results which reports hourly values globally. The ERA5T hourly temperature values for 

the Barrow location were obtained from Meteoblue (   

https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/reanalysis-

datasets ). 

 

The predictions are visually more accurate than the ERA5T values for the same general location 

(Figure 10), although it should be noted that the ERA5T values correspond to a grid that includes 

land and ocean, while Barrow represents a specific land location within that grid. Nevertheless,  

the ERA5T values may be a useful benchmark for the ARCH/ARMAX out-of-sample predictions. 

Regarding the RMSEs, the ARCH/ARMAX model predictions have an RMSE equal to about  

0.647 oC, while the ERA5T outcomes have an RMSE of about  1.786  oC. While some might assert 

that the ERA5T predictive accuracy is driven by the weather conditions of the Arctic Ocean, it 

may be more relevant that analysis of the ERA5T prediction errors indicates that the errors are not 

purely random. Specifically, the errors are conditional on the magnitude of the predicted 

https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/reanalysis-datasets
https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/reanalysis-datasets
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temperature and lagged value of the CO2 concentrations. The latter finding is consistent with the 

central thesis of this paper. Following Granger’s discussion of prediction errors (1986, p. 91),  both 

findings suggest a pathway to improving the accuracy of the ERA5T predictions.  

 

 

 

Figure 9. The out-of-sample predicted and actual hourly temperature at BRW, 1 Jan 2016 – 31 

December 2021. 
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Figure 10. The ERA5T reported temperature and the actual hourly temperature at BRW, 1 Jan 

2016 – 31 December 2021. 

 

 

Most readers know that the estimated CO2-related coefficients in Table 2 are point estimates. 

Given this reality, those who believe that the model presented here is “wrong” may contend that 

the CO2-related estimates reported in Table 2 overstate the “true” effect of CO2 on temperature. 

To assess the consequences of this possible claim, out-of-sample predictions were made assuming 

that the estimated coefficients' true value was 90 % lower. This obviously reduces the linkage 

between CO2 and temperature but also has consequences for predictive accuracy. Specifically, 

ignoring the full estimated effect of the CO2-related coefficients results in out-of-sample 

predictions with an RMSE equal to 3.153 oC., which is obviously inferior to the 0.647 oC   RMSE 
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obtained when the full estimated effects are employed in making the predictions. The differential 

in predictive accuracy is visually apparent if one inspects the vertical distance between the scatter 

points and the 45o line representing the relationship between predicted and actual temperature 

when the predictions are perfect (Figure 11). Regarding the prediction levels, the averages from 

the full model are not materially affected by this manipulation of the coefficients. This occurs 

because the time-series terms tend to keep the predictions relatively close to the lags of the actual 

temperature. Concerning the structural predictions, i.e., the predictions that ignore the time-series 

terms, disregarding the full effect of CO2 on temperature results in predictions that are about 4.24 

o C colder on average.  

The finding of inaccurate predictions over the evaluation period also emerges if one assumes that 

CO2 concentrations were equal to the average of their preindustrial values. According to the 

IPCC, this value is 287 parts per million (Ciais et al., 2013, p. 467). This value gives rise to out-

of-sample predictions with an RMSE of 0.663, which is inferior to the RMSE obtained when the 

actual CO2 concentration levels are used as inputs. It also gives rise to a structural prediction that 

is 0.756 o C colder on average. It is believed that this  0.756 o C value understates matters because 

the lagged temperatures, whose effects contribute to the hour-ahead predictions to some extent 

but are not reflected in the structural estimates,  are influenced by the CO2 levels in previous 

days, weeks, months, or even years.   The autocorrelations in hourly temperature at BRW from 

January 1, 1977, through December 31, 2021, are informative in this regard (Figure 12).   
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Figure 11. The out-of-sample predicted and actual hourly temperature at BRW when the 

statistically significant CO2-related effects are largely ignored, 1 Jan 2016 – 31 December 2021. 
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Figure 12. The first 350,000 autocorrelations in hourly temperature at BRW, January 1, 1977, 

through December 31, 2021. 

 

The out-of-sample analysis supports the earlier discussion indicating the unimportance of factors 

other than CO2 and the total downward solar irradiance being drivers of the increase in annual 

temperature over the sample period. Specifically, using the full model, the mean predicted 

temperature over the evaluation period equals -8.198850  oC. The mean predicted temperature 

over the evaluation period is -8.198851 oC if the estimated effects of the binary variables for 

1985 through 2014 are constrained to equal zero. In short,  the binary variables that attempt to 

control for the possibility of annual temperature being affected by factors other than CO2 or total 

downward solar irradiance have virtually no effect on the out-of-sample predicted temperature. 
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Interestingly, the mean actual temperature over the evaluation period equals -8.189553  oC, a 

very close value to the mean of the predicted values. 

 

8. The Implications of the ARCH/ARMAX modeling results for other locations 

 

Based on the methodology used to report the results presented in Table 1, this section 

examines the implications of the ARCH/ARMAX modeling results for the hourly temperatures at 

lower latitudes. The analysis proceeds by modeling the hourly temperature at  BRW  and 17  other 

locations far from Alaska. The locations include meteorological stations located in Algeria,  

Australia, Canada, Chile, China,  Egypt, India, Indonesia, Ireland, Italy, Japan, Pakistan,  South 

Africa, Tanzania, and Texas in the  United States of America. The locations also include MLO and 

SMO. Using hourly data, pairwise VAR equations (e.g., BRW and KDFW, the ICAO code for the 

station in Texas)  were estimated over the period January 1, 1985, through December 31, 2020  

(January 1, 1989, through December 31, 2020, in the case of the Valentia Observatory in Ireland). 

Some of the spatial correlations in hourly temperature in 2021 at these locations with the hourly 

temperature at BRW  are very low and even negative, which may suggest that the temperatures 

are largely unrelated( e.g., Dodoma Airport in Tanzania ). However, consistent with the findings 

reported in Table 1,  a time-series based data analysis does not support this belief. Specifically, for 

each of the 17 pairs of data, the null hypotheses of no two-way Granger Causality in hourly 

temperatures are not supported (Table 3). Consistent with this finding,  the lagged temperatures 

from both locations boost predictive accuracy at the non-BRW location in all cases. For example, 

the out-of-sample skill score associated with the lagged temperatures at BRW for the station 

located in  Egypt equals 0.577. A skill score of this magnitude is a respectable outcome given that 
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a useless predictive method would have a skill score of zero, while a perfect method would have 

a score of unity  (the value is calculated using a persistence forecast at the non-BRW location as a 

reference). These results indicate that the hourly temperatures at BRW have significant 

implications for the hourly temperature at lower latitudes. 

 

Table 3. 

 Granger Causality Wald  test results and out-of-sample predictive accuracy for 17  locations 

based in part on the lagged temperatures at BRW 

Non-BRW 

Location 

Latitude and Longitude 

of the non-BRW 

Observatory 

The null 

hypotheses of 

no two-way 

Granger 

Causality in 

hourly 

temperature 

Correlation 

with the 

hourly 

temperature 

at BRW in 

2021 

 

Skill-Score for 

the non-BRW 

2021 predictions 

when the data 

from BRW is 

used as an input 

based on a 

persistence 

forecast at the 

non-BRW 

location as the 

reference 

 

Mohamed Khider 

Airport in Algeria 

34.801667, 5.741667 Rejected 0.763 0.348 

Sydney Airport 

Australia 

-33.946111, 151.177222 Rejected -0.606 0.333 

Ottawa Airport in 

Canada 

45.3225, -75.667222 Rejected 0.787 0.408 

 La Florida Airport  

in Chile  

-33.533333, -70.583333 Rejected -0.631 0.370 

Beijing Capital 

International 

Airport in China  

40.0725, 116.5975 Rejected  0.766 0.307 

Cairo Airport in 

Egypt 

30.121944, 31.405556 Rejected 0.697 0.567 

 Begumpet Airport  

in India 

17.453056, 78.4675 Rejected  0.154 0.495 

Budiarto Airport in 

Indonesia 

-6.293171,  106.57 Rejected 0.010 0.722 
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Valentia 

Observatory in 

Ireland  

51.9394,  -10.2219 Rejected  

  

0.669 0.206 

Florence Airport in 

Italy  

43.81, 11.203889 Rejected 0.714 0.409 

RJTD weather 

station in Tokyo, 

Japan 

35.6918,  139.7514 Rejected 0.7943 0.385 

Walton Airport in 

Pakistan 

31.494722, 74.346111 Rejected    0.663 0.572 

Cape Town Airport  

in South Africa  

-33.969444, 18.597222 Rejected -0.595 0.373 

Dodoma Airport in 

Tanzania 

-6.170278, 35.749444 Rejected -0.277 0.480 

Dallas-Fort Worth 

Airport in the USA 

32.896944, -97.038056 Rejected 0.698 0.467 

MLO in Hawaii 

 

19.54, -155.58 Rejected  0.382 0.623   

SMO in American 

Samoa  

 

-14.25, -170.56 Rejected -0.268 0.345 

 

 

 

9. Summary and Conclusion 

This study estimated an ARCH/ARMAX model with statistical controls for total downward solar 

irradiance and other factors, including variables that control for the time-series nature of the data, 

to examine the relationship between CO2 concentrations and hourly temperature at the Barrow 

Atmospheric Observatory in Alaska. The model was estimated using hourly data over the time 

interval of 1 Jan 1985 - 31 Dec 2015. The model was evaluated using hourly data from 1 Jan 

2016 through 31 Dec 2021. The predictive R-square equivalence of 0.9966 over the evaluation 

period suggests that the model has reduced the attribution challenge associated with the 
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significant natural meteorological variability in the Arctic. Consistent with this view,  the 

predictions over the evaluation period are more accurate than the highly regarded ERA5T values 

for the same general vicinity. Thus, though the model fails to achieve the “white noise” metric in 

the standardized residuals, the accuracy of its  predictions over the evaluation period indicates  

that the model is “useful.” These results are consistent with the physics that indicates that rising 

CO2 concentrations have consequences for temperature, a point that even climate deniers such as 

Richard Lindzen, William Happer, Roy Spencer, Patrick Michaels, and the other members of the 

CO2 Coalition have conceded but with the stipulation that a doubling of the CO2 concentration 

level will only increase global temperature by about one degree Celsius  (   CO2 Coalition, 2015 

). What is different is that the model also offers useful insights into the magnitude of the 

relationship between CO2 concentrations and hourly temperature. Specifically, the predictions 

over the evaluation period are significantly more accurate when they reflect the actual CO2 levels 

estimated and statistically significant CO2 coefficients compared to when the CO2 effects on 

temperature are presumed to be small in magnitude. The out-of-sample results indicate that CO2 

concentrations have nontrivial implications for hourly temperature. The modeling results also 

addressed the possible contribution of factors other than CO2 being drivers of increased 

temperature over the sample. The mean of the out-of-sample predicted temperature over the 

evaluation period is not materially affected by these variables, even though some are statistically 

significant.  

 

Given that all models are “wrong,” it is a picayune task to dismiss the estimation results reported 

in Table 2. It is much more challenging to rationally dismiss the implications of the large decline 

in the out-of-sample predictive accuracy when the estimated CO2 effects are largely ignored. One 
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possibility is that some unknown natural factor at work is the true culprit of the decline in 

predictive accuracy. While climate deniers may find this an attractive explanation for the results 

presented in this paper, the model’s high level of predictive out-of-sample accuracy suggests that 

unknown factors are not an important driver of hourly temperature.     There is also the point that 

attributing the large decline in the out-of-sample predictive accuracy when the estimated CO2 

effects are ignored to an “unknown variable” is highly likely to represent obscurantism as opposed 

to a conclusion that represents the best of all competing explanations as explained by Lipton (2004, 

p. 56). In short, the beliefs of climate change deniers are not supported by the hourly temperature 

data at NOAA’s Barrow Observatory in Alaska. Considering the inadequate results on climate 

action reported by Matthews and Wynes (2022, p. 1404), this suggests that the current outlook for 

the Earth’s future is quite grim. However, research that further illuminates the effects of CO2 and 

other greenhouse gases at the hourly level might enable the consilience of evidence to reach a 

tipping point in terms of public support. One approach being considered is an analysis of the 

drivers of the hourly surface energy imbalance, a metric that is easily understood as being 

important but that climate deniers almost never mention. To its credit, the IPCC does acknowledge 

the importance of this issue. However, an inspection of the latest IPCC report indicates that 

analysis of the hourly surface energy imbalance is in its infancy. One possible reason for this is 

that the hourly data are noisy and thus very challenging to work with using the methods typically 

employed by climate scientists. Interestingly, a preliminary analysis indicates that the hourly 

surface energy imbalance at Barrow and other locations is autoregressive, heteroskedastic, and 

Granger Causality related to other locations' imbalances.   Given these attributes, it may not be 

overly optimistic to suspect that an ARCH/ARMAX analysis of this hourly data, complete with an 

out-of-sample evaluation of the statistical results to ensure credibility,   could facilitate an 
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improved understanding of this important topic that could be effectively communicated to the 

general public. 
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